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On the intrinsic dynamics of premixed flames
By G. 1. SivASHINSK YT
The Institute for Applied Mathematics and Scientific Computing, Indiana University,
618 E. 3rd Street, Bloomington, Indiana 47405, U.S.A.
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A brief account of the structure and dynamics of freely propagating premixed gas
flames in the régime of spontaneous flame instability is given. Recent theoretical
studies providing a reduction of the pertinent free-boundary problem to a single
evolution equation for the flame interface are discussed. The striking feature of the
premixed flame is described. The flame, being an entirely deterministic system,
proves capable of displaying irregular spatio-temporal behaviour similar to that
known in hydrodynamic turbulence.
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1. Introduction

The premixed flame (the self-sustained wave of exothermic chemical reaction) is the
most natural mode of gaseous combustion and, hence, the main object of attention
in combustion theory. Recently, however, premixed flames became of interest also
to the general theory of dynamical systems. It transpires that flames, though fully
deterministic physical systems, are, under certain conditions, liable spontaneously to
become turbulent, as happens in flows of viscous fluid at large Reynolds numbers.

Although flame propagation is invariably accompanied by the motion of the
underlying gaseous mixture, the nature of the flame generated turbulence is quite
different from that of the viscous fluid, albeit sharing many of its basic features.
For example, similar to the Navier-Stokes turbulence, flame dynamics involves
many chaotic degrees of freedom. However, in contrast to the viscous fluid, flame
turbulence may survive even in the one-dimensional version of the problem. In this
sense the premixed flame provides a relatively simple yet quite realistic system for
the study of turbulence-type phenomena, one of the most fascinating and challenging
problems of nonlinear phenomenology (cf. Manneville 1988 ; Hohenberg & Shraiman
1989).

The present paper is intended as a wide-brush discourse on the inherent dynamics
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- of flame propagation (rather an active topic in combustion theory). For a more
§ P systematic acquaintance with the fundamentals of the subject the reader may
e ~ consult the recent monographs of Buckmaster & Ludford (1982), Strehlow (1984),
M Zel’dovich et al. (1980a), Williams (1985) and also surveys by Clavin (1985) and
- 5 Sivashinsky (1983).
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136 G. 1. Sivashinsky

2. Experimental observations

The planar flame is clearly the most simple configuration of the combustion wave.
While such flames are quite feasible in the laboratory, it is also known that under
certain physico-chemical conditions flames spontaneously assume a more complex
two- or three-dimensional structure.

It has long been known that the flame on a Bunsen burner may split up into
triangular flamelets, which form, instead of the usual cone, a polyhedral pyramid
that sometimes even rotates about its vertical axis (Smithells & Ingle 1882; Smith
& Pickering 1928; figure 1, plate 1).

It was later found (Zel’dovich 1944 ; Markstein 1949) that this manifestation of
spontaneous flame instability is not unique. In combustion in wide tubes (ca. 10 cm
in diameter), the flame frequently breaks up into separate cells, ca. 1 cm in size, in
a state of continuous irregular self-motion, merging and splitting (figure 2, plate 1).

It has been observed that the cellular instability primarily occurs in fuel-oxidizer
mixtures that are deficient in the light reactants (e.g. rich mixtures of heavy fuels or
lean mixtures of light fuels), i.e. when the Lewis number of the deficient reactant is
smaller than some critical value.

However, as has also been noticed, although cells are reluctant to emerge in high
Lewis number premixtures, the flames here are nevertheless not absolutely stable
and may exhibit sharp wide-spaced ridges which are well maintained even under
deformation and extension of the flame (Markstein 1964 ; Strehlow 1984). Moreover,
in experiments with spherical flames propagating in closed high pressure vessels it
was found that apart from the large-scale ridges, lean hydrocarbon—air flames may
also exhibit cellular instability, provided the flame radius exceeds a certain critical
value (Istratov & Librovich 1969; Groff 1982; figures 3 and 4). Under normal
pressure an apparently similar mode of instability was observed in large-scale flames
propagating from the centre of 5 and 10 m radius plastic bags, with cells reaching
size ca. 10 cm (Lind & Whitson 1977).

It therefore seems safe to state that cellular instability is an inseparable feature of
any premixed combustion. The size of the cells, however, is strongly dependent on
the composition of the mixture, and in relatively small-scale systems the developed
mode of the instability may well be obscured.

3. Premises of the theory

The principal difficulty in a theoretical approach to combustion processes is clearly
the large number of elementary chemical reactions involved. Moreover, for many
reactive mixtures of practical interest the pertinent knowledge of chemical kinetics
is either not accurate enough or not yet available.

Fortunately, however, many aspects of the flame front dynamics may be described
reasonably well without addressing the detailed chemistry, but rather using a naive

one-step scheme:
deficient reactant — products + heat, (1)

coupled with the Arrhenius temperture dependence of the reaction rate.

The irrelevance of the chemical complexity is one of the miracles of premixed
combustion and certainly a great blessing to the theoreticians whose analytical
means are, as always, rathe: limited.

The basic mechanism of flame propagation is the successive ignition of a chemically

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 1. Polyhedral Bunsen burner flame of rich butane—air mixture.
(Courtesy of S. Sohrab; see also Jacobi & Sohrab 1990.)

Figure 2. Rich propane—air cellular flame in state of chaotic self-motion.
(Courtesy of P. Clavin; see also Sabathier et al. 1981.)
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On the intrinsic dynamics of premized flames 137

Figure 3. Successive frames showing spherical flame propagating in closed high-pressure vessel.
Note large-scale ridges at the initial (non-cellular) stage of flame evolution. (Reproduced from
Istratov & Librovich (1969), with permission.)

frozen explosive mixture by the heat liberated during the reaction. Typical profiles
of temperature (7'), concentration ('), and reaction rate (W ~ Cexp(—E/RT)) in a
planar combustion wave are shown in figure 5. Here 7} is the temperature of the
unburned cold mixture, at which the reaction rate is negligibly low; € is the initial
concentration of the species which is entirely consumed in the reaction (deficient
reactant); 7} is the adiabatic temperature of the burned gas, usually 5-10 times 7},;
E is the activation energy of the reaction; R is the universal gas constant.

The thermal thickness ([;) of the flame is defined as D,,/U,,where D, is the

Phil. Trans. R. Soc. Lond. A (1990)
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138 G. 1. Sivashinsky

Figure 4. Photograph showing a cellular flame of lean propane—air mixture ignited at the centre of
260 mm diameter constant volume vessel. The initial pressure P, = 400 kPa, the initial temperature
T, = 300 K, the equivalence ratio ¢ = 0.80. The picture corresponds to ¢ = 101 ms from the
moment of ignition (courtesy of E. G. Groff, originally in Groff 1982).

Ty

Figure 5. Profiles of temperature, concentration and reaction rate in a planar combustion wave.

thermal diffusivity of the mixture and U, is the propagation speed of the planar
flame relative to the unburned gas.

Because the reaction rate is strongly temperature dependent (E/RT, ~ 20) the
bulk of the chemical reaction occurs in a narrow temperature interval AT ~ RT?/E
around the maximum temperature 7). This temperature interval corresponds to a
thin layer of width (R7,/E)l,, = I, (reaction zone), outside of which the reaction may
be neglected.

Phil. Trans. R. Soc. Lond. A (1990)
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On the intrinsic dynamics of premixed flames 139

The propagation speed of the flame (U,) is determined by the balance between the
heat liberated during the reaction and the heat required to preheat the fresh mixture

Uu—[ 2Du, J W, T)dT] 2)

(Zel’dovich & Frank-Kamenetsky 1938).

Due to its diffusive nature, the speed of flame spreading is significantly lower
than the speed of sound. For one of the most rapidly burning mixtures (2H,+O,),
U, ~ 10 m s and /,;, & 0.0005 cm, while for one of the most slowly burning mixtures
(6% CH,+air), U, ® 5 cm s! and {;, ~ 0.05 cm.

In mathematical modelling, therefore, the effects of dynamic compressibility may
often be neglected. If combustion occurs in an open space the density of the mixture
may then be considered a function of temperature only.

Owing to the large activation energy, the reaction zone occupies only a narrow
sublayer within the overall flame structure (I, < l;,, figure 5). For planar or weakly
distorted flames the reaction rate W may therefore be treated as a localized source
distributed over a certain interface—flame front. Intensity of the source varies along
the front as exp [E(T,—T},)/2RT?] (cf. Sivashinsky 1975). Here 7} is the temperature
at the curved front, Wthh may differ from 7}, by a quantity of the order of RT}/E.

Due to the strong temperature dependence of the reaction rate, even slight changes
in 7} may strongly affect its intensity, and thereby also local flame speed. The study
of flame propagation is thus reduced to a free-boundary problem.

In suitably chosen non-dimensional variables and parameters the corresponding
set of equations acquire the following compact form:

heat
00 00 0 00
—— X 1p6-1)
Pt P, Oz, ’()x Oz, o, ¢ Or ©)
diffusion
aoC o 1 00
il ) zﬁ(e 1)
Pt P = Totw, on, Ops )
continuity
op , Opu;
=0, (5)
momentum
Opu;  dpu;uy _ Op 0 (a”’i QU 5y Oty
ot + ox, axﬁ”axk 0x, 0, O 0x,, ©
state

p=1/(c+(1-0)0O). (7)

Here 8, = |[VF|0(F) is the surface delta-function localized along the front F(x;,t) = 0.
F > 0 corresponds to the unburned gas, while /' < 0 corresponds to the burned gas.

The non-dimensional quantities in (3)—(7) are defined as follows: @ =
(T'-1T,)/(1,—1T,) is the reduced temperature; C is the concentration of the deficient
reactant referred to C,; p is the density referred to p,, the density of the unburned
gas; u, is the gas velocity referred to U,; p is the pressure referred to p, U%; x, and
t are the spatio-temporal coordinates referred to I, and {,, /U, respectively ; Le is the
Lewis number (the ratio of thermal diffusivity D, to molecular diffusivity D Pr
is the Prandtl number; g = E(T,—1T,)/RT? is the Zeldovich number.

Far ahead of the flame front the reduced temperature @ is zero, while the

mol)

Phil. Trans. R. Soc. Lond. A (1990)
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140 G. 1. Sivashinsky

concentration C' is unity. Far beyond the front the temperature is equal to the
adiabatic temperature of the combustion products, i.e. @ = 1. In the burned gas
region (F < 0) the deficient reactant is completely consumed, i.e. C'= 0.

In this formulation the normal speed of the planar flame (U,) is regarded as a
prescribed physico-chemical parameter of the system.

4. Certain aspects of the linear stability analysis

In the frame of reference attached to the front, the planar (¥ = x,) solution of
(3)—(7) may be written as

OO =expx, for x,<0,
P X3 3 } (8)

09 =1 for xz,>0,
oo = 1_[@(0)]Le, p(0) — [1+(1_0.) @(0)]—1,}
w® =u® =0, u® =1+(1-0)0". ®

For all the simplicity of the planar solution (8), (9) its linear stability analysis is
far from trivial and has a long and bewildering history. There are, however, two
limiting cases for which the problem is unlocked relatively easily. These are:

(i) first order long-wavelength approximation and

(ii) constant density approximation, o = 1.

In the first limit the transport processes, and therefore the thermal-diffusive
structure of the planar solution (8), (9), are irrelevant. Hence, the flame may be
regarded as a discontinuity of density propagating relative to the non-viscous and
non-conducting gas with a prescribed speed U,,.

Within the framework of this model, linear analysis of the stability of the plane
flame front yields the following dispersion relation (Darrieus 1938; Landau 1944),

(c+ot—cdi—0

©= o(l+o) Ik, (10)

where F = x,— ®D(x,1), D ~ exp (wt+ ik Xx), x = (%;, x,).

The rate of instability parameter w is positive for all ¢ < 1. Thus, in the range of
long-wavelength disturbances, thermal expansion exerts a destabilizing influence.

In the constant density limit thermal disturbances in the flame cannot be
transformed into hydrodynamic disturbances, and so the problem of combustion
proper is completely divorced from that of hydrodynamics. As a result, the stability
problem becomes tractable for the whole range of wavenumbers. The pertinent
dispersion relation, for the long-wavelength disturbances and Le ~ 1, yields

(Barenblatt et al. 1962): = A1 —Le)— 1]k (k = k). (1)

Flame stability thus appears to be quite sensitive to the composition of the mixture.

If the mobility of the deficient reactant is sufficiently high (Le > Le, = 1—2/p),
the flame is unstable, supporting the general tendency of the experimental
observations.

In a typical flame, # =~ 15 and so Le, =~ 0.87, which is quite a good threshold at
least for lean hydrogen-air flames where Le ~ 0.38. The validity of this purely
diffusive mechanism of instability for cellular flames of rich hydrocarbon-air
mixtures is less obvious. As has been observed by Clavin & Williams (1982) (see also
Frankel & Sivashinsky 1982; Pelce & Clavin 1982; Jackson & Kapila 1984), k-
correction to the dispersion relation (10), incorporating dissipative effects, is

Phil. Trans. R. Soc. Lond. A (1990)
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On the intrinsic dynamics of premixed flames 141

markedly affected by thermal expansion. As a result, for example, rich propane air
flames appear to be thermo-diffusively stable (Le > Le,) and in this sense formally
indistinguishable from lean propane-air flames (Le > 1), although experimentally
these systems behave quite differently.

One of the possible ways of resolving this difficulty is to account for heat loss.
It has long been known (cf. Markstein 1949) that cellular structure in rich
hydrocarbon-air mixtures has a tendency to occur near the flammability limit. As
has been shown by Joulin & Clavin (1979) and by Sivashinsky & Matkowsky (1981),
heat loss indeed expands the thermal-diffusive instability limits, moving Le, to unity
near the quenching point.

The alternative mechanism of cellular instability, proposed by Pelce & Clavin
(1982), will be discussed in §8.

5. Nonlinear theory

As is suggested by the results of the linear analysis, near the stability threshold
(0 =1, Le = Le,), the distorted flame front is expected to be both quasi-steady and
quasi-planar, i.e. to evolve on time-length scales much larger than those inherent to
the planar flame. Technically, this may lead to the separation of scales, and, thereby,
to the lowering of the effective dimensionality of the underlying dynamical system.
The pertinent nonlinear multiple-scale asymptotic analysis fully supported this idea,
reducing the overall dynamical problem to the closed evolution for the interface itself
(Sivashinsky 1977):

FYVD) +[LA(1 — Le) — 1] V2D + 4Vid = Y1 — ) [{D}, (12)

where K{®) = Rflkl etk x=x) @(x* 1) dx* dk. (13)

This equation is asymptotically exact when Le is close to Le,, while ¢ is close to unity,
i.e. when thermal expansion is considered to be weak.

To elucidate the role of each term in (12) it is useful to look at the dispersion
relation corresponding to its linearized version

=11 —0)k+[3B(1—Le)— 1] k> —4k?. (14)

The first term here clearly recovers the Darrieus—Landau relation (10) for o~ 1,
while the second, thermal-diffusive instability (11). The third term yields dissipation
of short-wavelength disturbances, thereby providing the smoothness of the nonlinear
evolution. Due to this term there is always a wavelength A, = 2n/k, corresponding
to the maximum amplification rate (max w) of small harmonic disturbances.

The nonlinear term in (12) relates to the small deviation of the front normal from
the axis ;. This nonlinearity, for all its simple kinematic origin, proves to be quite
sufficient not only in restraining the otherwise exponentially growing modes, but also
in providing mode coupling leading to the self-turbulization of the system. To clarify
the individual impacts of thermal-diffusive and of hydrodynamic instability on flame
dynamics, it is instructive to study two versions of (12): one in which hydrodynamic
instability is completely suppressed,

+4{V®)+[1p(1 —Le)— 1] V2D +4ViD = 0 (15)
Phil. Trans. R. Soc. Lond. A (1990)
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142 G. 1. Sivashinsky

2 (a) 2

Figure 6. Thermal-diffusive instability. Numerical solution of the equation u, +§(us)® + g + gy = 0
(rescaled one-dimensional version of (15)) on the interval 10A, with periodic boundary conditions.
Each frame represents the configurations of the flame front at five consecutive equidistant instants
of time. (@) Flame front close to the moment of initial disturbance; (b) formation of quasi-periodic
cellular structure; (c) and (d) flame front in developed self-turbulent régime. (Michelson &
Sivashinsky 1977.)

and the second, in which thermo-diffusive instability is absent (Le > Le,), and,
therefore, it is presumably safe to omit the fourth-order dissipation term. Hence,

D, +{VD)*+[Lp(1 —Le)— 11 V2D = {(1 — o) {P}. (16)

6. Thermal-diffusive instability: numerical experiments

Numerical experiments with (15), which at Le < Le, describes purely thermal-
diffusive flame instability, show that when a planar front is disturbed it evolves
ultimately into a cellular pattern with a cell size close to A,.

The striking feature of (15) is that the cellular structure it generates appears to be
essentially non-steady, the cells being in a state of continuous irregular self-motion
(figures 6 and 7). Different initial conditions generate different solutions. However,
with elapsing time these solutions become statistically indistinguishable. Thus, being
quite deterministic in nature, equation (15) appears to be capable of displaying
turbulence-type behaviour; still rather a rare feature in classical phenomenology. It
is interesting that the chaotic self-motion in cellular flames is long known from
experiments (Markstein 1949, 1951) and was later reconfirmed in a study by
Sabathier et al. (1981) under carefully controlled flow conditions (figure 2).

Phil. Trans. R. Soc. Lond. A (1990)
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On the intrinsic dynamics of premized flames 143

Figure 7. Thermal-diffusive instability. Numerical solution of the one-dimensional version of (15),
showing spatio-temporal evolution of the maxima and minima of the self-fluctuating cellular
structure. The problem was solved on the interval 504, with periodic boundary conditions
(courtesy of H. Chaté; see also Chaté 1989).

The temperature variation over the front predicted by the theory also correlates
well to the observations yielding a higher temperature at the troughs and lower at

the crests of the cell, gy & (7.— 1) V2 at the front. (17)

However, as has already been mentioned, quantitative correlation here is likely
only for lean hydrogen—air flames, unless the effects of heat loss are taken into
account.

Recently Denet (1989) and Denet & Handelwang (1990) (see also Patnaik et al.
1988) undertook a direct numerical simulation of cellular instability based on the
constant density reaction—diffusion system with the distributed reaction rate W.
They found that close to the stability threshold the reaction wave indeed evolves
according to the predictions of the flame equation (15) (see figure 8).

However, sufficiently far from the bifurcation point the cellular flame quenches at
the crests resulting in a complete disintegration of the front. An apparently similar
phenomenon was recently observed by Ronney (1990) in his zero-gravity experiments
with lean hydrogen—air flames.

To conclude this section we would like to make one remark concerning the high
activation energy limit and the associated d-function approximation for the reaction
rate.

For the actual derivation of (16) the high activation energy assumption is quite
helpful technically. Yet, as has been demonstrated by Kuramoto (1980), due to the
slowly varying structure of the reaction wave, this requirement may well be relaxed
without affecting the basic nature of the evolution.

Phil. Trans. R. Soc. Lond. A (1990)
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p=>

Figure 8. Distribution of isotherms in a chaotically evolving cellular flame at three distinct
moments of time. Numerical solution of the constant-density reaction—diffusion model for
premixed flame propagation. The aspect width of the systems is 120/, ; W~ Cexp (—H/RT);
T /)T, =0,2; Le =0.6; f =10 (courtesy of B. Denet and P. Handelwang; originally in Denet
(1989)). (a) t = 48, (b) t =72, (c) t = 96.

-1200
-250
-270
-290 . -1400 , : : : R . et -
0 30 60 0 250 500
£ 3

Figure 9. Hydrodynamic instability. Numerical solution of the equation
¢T+%(¢£)2 = ¢gg+%]{¢}

(rescaled one-dimensional version of (16)) on the intervals of () 2.5A, and (b) 20A_, with adiabatic
boundary conditions (Gutman & Sivashinsky 1990).

7. Hydrodynamic instability : numerical experiments

The typical length scale of the cellular structure (A,) induced by (15) correlates well
with the predictions of the linear theory. In the case of hydrodynamic instability
described by (16), it would be natural to expect a similar correlation. Numerical
experiments show, however, that here the situation is much more complicated and
strongly depends on the size of the domain.

At moderately wide intervals (ca. 10A,) the one-dimensional version of (16), solved

Phil. Trans. R. Soc. Lond. A (1990)
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On the intrinsic dynamics of premixed flames 145

subject to periodic boundary conditions, yields a single cusp-like configuration,
whose location depends on the initial data. For more realistic, adiabatic, boundary
conditions the crest of the final cusp never settles down inside the interval, rather
being attracted to one (or both) of its ends. As a result the equilibrium flame shape
appears as a smooth surface convex toward the fresh mixture (figure 9a).

The very early stage of the flame evolution basically follows the indications of
the linear analysis; modes corresponding to A, have the highest growth rate. This,
however, does not last long. The initially appearing small-scale cells merge, forming
bigger cells and so on until the large single cell filling up all the interval is finally
formed. After this, the flame configuration settles down as a completely time
independent progressive wave (Michelson & Sivashinsky 1977; Denet 1989 ; Gutman
& Sivashinsky 1990). The convex flame configuration generates a gradient in the
tangential component of the gas velocity along the front, stretching out ever present
small disturbances. This is apparently the reason for its remarkable stability
(Zel’dovich et al. 19805).

The source of the Darrieus—Landau paradox, therefore, is a complete linearization
of the evolution equations. The nonlinearity brings in a major stabilizing factor,
sustaining smooth configurations on scales considerably exceeding A, suggested by
the linear theory.

However, at rather wider intervals (20A,) the stabilizing effect of stretching is
weakened, and the basic convex configuration acquires a fine structure comprising of
time-dependent smaller scale cells (figure 9b). The cells being in a state of permanent
splitting and merging move from the trough of the basic large scale configuration to
its crest or to the ends of the interval (Michelson & Sivashinsky 1982; Gutman &
Sivashinsky 1990). Here the cells may often reach the size ca. 5A,. The dual nature
of hydrodynamic instability is likely to be related to similar observations made for
high-pressure lean hydrocarbon-air flames (Istratov & Librovich 1969 ; Groff 1982;
figures 3 and 4). In these systems all scales are proportionally reduced and the
secondary structure becomes quite observable in the laboratory.

Interestingly enough, the found non-steady cellular structure does not seem to be
admissible by the pole-decomposition theory of (16) recently proposed by Thual et al.
(1985) and Joulin (1989). Since at wide intervals larger-scale configuration appear
to be rather sensitive to small perturbations, it is argued that numerically (and
presumably experimentally) observed small-scale cells are actually induced by weak
external (e.g. numerical) noise rather than a self-sustaining phenomena (Joulin
1989). It would be important, therefore, to ascertain whether the class of
meramorphic functions associated with the pole-decomposition approach is indeed
wide enough to embrace all the relevant solutions, or whether the matter is more
involved.

8. Effects due to acceleration

Since combustion is accompanied by thermal expansion of the gas, it is clear that
buoyancy will exert a stabilizing influence on downward propagating flames. This
problem has been studied by Pelce & Clavin (1982).

In contradistinction to a freely propagating flame, a flame moving in the presence
of a stabilizing acceleration is stable to longwave disturbances. Near the stability
threshold the unstable modes are concentrated near A, (the wavelength corre-
sponding to the maximum amplification rate w). As a result one may observe A-
size cells even in small-scale systems which are thermo-diffusively stable. Pelce &

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 10. Thermal expansion induced hexagonal cellular structure occurring near the stability
threshold (G = 0.8G,). Numerical solution of (18) in 5A,x 5A, square with periodic boundary
conditions (Michelson & Sivashinsky 1982).

Clavin (1982) argue that this mechanism may be the reason for cellular instability
observed in rich propane—air flames in vertical tubes (figure 2). To clarify the matter
the appropriate zero-gravity experiments would be very instructive.

With regards to the nonlinear dynamics, the corresponding evolution equation
incorporating both the Darrieus-Landau instability (10) and the stabilizing effect of
buoyancy may be written as (cf. Michelson & Sivashinsky 1982 ; Rakib & Sivashinsky
1987)

D, +LVP)2+[Lp(1 —Le)— 11 V2@ + Q[ —(D)] = Y1 —0) [{D}, (18)

where G = {g(1 — o) I, U,? is the non-dimensional acceleration; {...) means average
over the tube cross-section.

For G > @G, =%(1—0)*[3f(Le—1)+1]"" the planar flame is linearly stable.
However, at @ somewhat below ¢, the solution of (18) assumes a cellular structure
which may be chaotic or even regular, provided G is close enough to G, (figure 10).

9. Concluding remarks

1. Despite the limited range of its strict validity, equation (12) appears to be rich
enough to cover rather a wide spectrum of phenomena apparently pertinent to the
main features of real premixed flames. Even considering all the information available
on (12) there is still much to be done in answering some very basic questions. For
example, how does the overall speed of the wrinkled flame depend on the length of
the interval ¢ Does it grow indefinitely with the interval length, or approach a certain
finite limit ? Some large-scale numerical studies here would be quite welcome.

2. Equation (12) being associated with small disturbances of the planar front
(z; = 0), somewhat conceals the geometrical nature of the terms it is comprised of.

As has been recently shown by Frankel & Sivashinsky (1988) and Frankel (1990q),
in the geometrically invariant formulation (12) is modified to

n-dr/dt = 1+ [3f(1—Le)— 11k +4Vik+w,, (19)

where r is the position of the flame interface S; n is the outward normal; x = V-n is
the curvature; Vi« is the Laplace-Beltrami operator (surface laplacian) of the

Phil. Trans. R. Soc. Lond. A (1990)
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curvature (in the two-dimensional case Vik = k,,, where s is the arc length of the

front curve);
_ (-0 n [ (=§
o) =" [“’(v—l)n Llr—glvds] (20)

is the normal projection of the gas velocity induced by thermal expansion (Frankel
1990a); v (= 2 or 3) is the dimension of the system.

3. The combustion systems discussed in this paper, for all their fundamental
interest, are rather idealized in nature. Flame propagation problems of practical
interest deal as a rule with situations where the overall system is confined and subject
to the influence of external sources (or sinks) of energy, species as well as momentum.
A vast experimental and theoretical data is accumulated on these aspects of
premixed combustion and could claim at least as much right of attention as those
who received their due here.

With regard to spontaneous flame instability, perhaps the most serious omission
is the absence of any discussion of the oscillatory and spinning modes of flame
propagation which are expected to emerge in high Lewis number flames. Despite a
rather scanty experimental data on the phenomena in gaseous premixtures, in the
combustion of some condensed system, where Le = 0o, this mode of instability
appears to be quite feasible and received a good deal of attention both experimentally
and theoretically.

Similar to the gaseous systems one can obtain here an approximate closed equation
for the flame interface (Frankel 19906). Moreover, as has been recently found by
Bayliss & Matkowsky (1990), the oscillatory instability appears to be rich enough to
exhibit not only regular periodic pulsations but the irregular chaotic pulsations as
well.

These studies were supported by the U.S. Department of Energy under Grant no. DEFGO02-
88ER 13822, by the National Science Foundation under Grants nos CTS-8910903 and DMS-
8802596, and by the U.S. Air Force Office at Scientific Research under Grant no. AFOSR-88-103,
while the author was visiting the Institute for Applied Mathematics & Scientific Computing of
Indiana University, Bloomington.
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gure 1. Polyhedral Bunsen burner flame of rich butane—air mixture.
(Courtesy of S. Sohrab; see also Jacobi & Sohrab 1990.)
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gure 2. Rich propane—air cellular flame in state of chaotic self-motion.
(Courtesy of P. Clavin; see also Sabathier et al. 1981.)
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igure 3. Successive frames showing spherical flame propagating in closed high-pressure vessel.
ote large-scale ridges at the initial (non-cellular) stage of flame evolution. (Reproduced from
tratov & Librovich (1969), with permission.)
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“gure 4. Photograph showing a cellular flame of lean propane—air mixture ignited at the centre of
)0 mm diameter constant volume vessel. The initial pressure P, = 400 kPa, the initial temperature

= 300 K, the equivalence ratio ¢ = 0.80. The picture corresponds to {= 101 ms from the
oment of ignition (courtesy of E. G. Groff, originally in Groff 1982).
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